Dokuz Eylul University
Dept. of Computer Engineering

www.cs.deu.edu.tr

Multi-Threaded Downloaded Manager
(MTDM)

Technical Documentation
License: GPL

Ferad Zyulkyarov
Samet Basaran
Ozgur Deveci

GPL ©2007

-1-

http://www.feradz.com/
http://www.sametbasaran.com/

Table of Contents

ABSTRACT ... aeeeeeeeeeeeeeeeeeeeeeeeeeeesesesses 3
INTRODUCTION....cctttttteeeeeeeeeneeeeeeeeeeeeesesesss 3
APPROACH ceeeecencecsesensssesansnes 3
ettt et ettt e e et e aaaaaaaaaaataaaaaaes eeeetreeeaaaas 3
O OO 3
DESIGNuauueeeieeereeeneeeeeesssssssessssesssssssssssssssessanasss 5
ATCRILECTUIE.oooiiiiiiiiieeeee ettt e e e e e eeeeee eeeeanneesernneeeannes 5
SOCKEL. .. et e ettt e e e e e e et bt etaeeae et aanas 6
HT TP CONNECHION.cceeiiiieieee et ettt e e e e e e eettaaeeeeeeees oeeeneesaneennas 6
DOWNIOAAET.........ooiiiiiieeeeeeeeeeeeeeeeeeeeee et et et e e e e e eeeeeaaesaeeeeseseeneaene s 6
Interface Functions - FileDoWnloader.............ooouvueiiiiiiiiiiiiiiiiies e 7
Utility COMPONENLS......eeuteeiieiieieeieete ettt ete ettt et e sitestesteetesateane 2eeeabeeeaeans 8
USER MANUAL...uoaaeeeeceeeeneeseeeeeeecsosss 9
(010750] 021 =14 1o 4 P UUPUUPR 9
RUNNING. ...ttt ettt st tteeeae anabbareeeeeeeaeeaeeas 9
1 LT ST 10
IMPLEMENTATION ceceececcncencsnsens 11
LINKPARSER.. ...ttt et e e e e eeeeeeeeee eaaneeessaseesaneeeesnnns 11
URLCOLLECTION. ...ttt e e s aevnaeees 13
L8 23 SRR 15
DOWNLOADLINKS.ttt aaaee eaaeeesneeesanns 19
FILEDOWNLOADER........coooiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeaee eeaee et eeanans 20
URLFILE ...ttt ettt e e aeeenaeeeeans 21
THREAD RECORD.........oottiiiiiiiiiiieeeeeeeeeeeeeeeeeee s et 24
THREAD TABLE ..ot e reaeee aevaans 29
N1 0 1G] 4 S RN 31
HTTPCONNECTION.ottt e e e e e eeeeeeeeeeees taneeesanns 34
DOWNLOADER.........ooottiiiiiiiiieeeee ettt e et 38
DOWNLOADFUNCTIONATTRIBUTE.........coooiiiiiiiiieeeeeeeeaes o 40

ABSTRACT

This document describes the design and implementation of multi threaded download
manager. Implementation utilizes POSIX threads and is written in C/C++ programming
language.

INTRODUCTION

A multi threaded download manager establishes multiple HTTP connections with the
remote HTTP server. Each connection downloads a separate segment from the specified
URL file. In this way the multiple threads perform a parallel download of different
segments of the remote URL file. The achieved result of such technique is fast and
accelerated download process compared to a single thread performed downloads.

APPROACH

Because of our restriction to use C or C++ programming languages to implement the
download manager we will compare the advantages and disadvantages of both and decide
on which language to use.

C

The main advantage of using C as a main programming language is that POSIX threads
are implemented for C language. There will not be any difficulty on lunching threads and
their management. Also C is respectively low level compared to C++, therefore some
functions may appear to be easier for implementation than in C++. But the main an
serious disadvantage of C is that it is not object oriented programming language (OOPL)
as C++ is. What this means is that the program would not be easily extended if needed.
For example, if we decide to add an additional functionality to download files from an
FTP server we will need to alter great amount of the source code. This is rather unwanted
condition, because code written in C is not often reusable.

C++

C++ 1s OOPL and once a code is written it can be reused and the program may be
extended easily. C++ supports all functionality of C because C++ derived from C. The
main disadvantage is that C++ functions are not compatible with POSIX threads. But this
limitation can be overcome if C++ object is wrapped in a C function.

DESIGN

Upon discussions made in the previous section we conclude that C++ is superior than C
and decide to implement the download manager in C++ programming language.

Main operation that has to be handled by the download manager are:

e Socket operations
Creating Socket
Binding Socket
Open Socket
Close Socket
Send Data Through Socket
Receive Data From Socket

e HTTP connection
Creating a HTTP connection
Open a HTTP connection
Close a HTTP connection
Sending a HTTP request
Receiving a HTTP response

e Storing remote file to local drive
Create file
Open file
Close file
Manage simultaneous write requests of multiple threads

e Download manager
Manages the parallel downloads performed by multiple threads

Keeps track for each thread involved in a download process

All of the processes listed above are slightly described in the forthcoming subsection
and detaily described in Implementation section.

Architecture

Below is given a figure that depicts the conceptual model of the download manager with
the components handling classified operations described at the beginning of this section.

Interface Functions - FileDownloader
Ltility Components:
, URL

Downloader URLFile TR Callection

. ThreadTab le

HTTPConection ThreadR ecord

LinkParser

Socket

Figure 1 — Download Manager Architecture

Socket

Socket component, as earlier discussed, manages all socket operations. It creates, binds,
opens, closes socket connections. This component also handles sending data though
socket and receiving data from socket. This component is utilized by the one upper level
component HTTPConnection.

HTTPConnection

HTTPConnection component manages HTTP connections established with the HTTP
server. This component uses Socket component to connect to a HTT server, send request
to HTTP server and receive responses from HTTP server. HTTPConnection component is
used by Downloader and URLFile components.

Downloader

Downloader component manages download process that is performed by multiple threads
in parallel. This component collaborates with the URLFile object to store downloaded
data in a physical file.

Downloader object creates as many HTTP connections as requested by the Interface
functions. After with the utilization of URLFile object it stores downloaded data in a
consistent manner solving the race condition that occurs whenever two or more threads
wants to write in the file.

Interface Functions - FileDownloader

This component plays the role of interface for the download manager. It lunches
download threads as requested by the user and creates the objects that are involved in the
download process.

This component is implemented in C programming language to provide an entry point
function for POSIX threads that are being created. The function that is an entry point for
each thread wraps Downloader object. The wrapping technique is shown in the code
below.

class Downloader // Downloader component

{
public:
bool downloadThreadId(int threadId);

}
//In FileDownloader component

int download_file(string url, int threadNum)

{

Downloader downloader (url, threadNum); // Create a Downloader object
int status;

int i;

pthread_t threads[threadNum];
cout << "STATUS: Download started..." << endl;

for (i = 0; i<threadNum; i++)
{
// Prepare threads argument
// Wrap Downloader object and pass it as argument to the thread that will
// be created
DownloadFunctionAttribute dfa(&downloader, 1i);

if ((pthread_create(&threads[i], NULL, download_hand, (void*)&dfa)) !=0)

{
cerr << "ERROR: Download failed..." << endl;

return ERROR;
}

sleep(l);
}

// Join threads
for (i = 0; i<threadNum; i++)
{
pthread_join(threads[i], NULL);
}

downloader.saveFile();

return SUCCESS;
// Resources will be freed automaticaly by destrucotrs

}

// FileDownloader - Thread Entry Point
void *download_hand(void *arg)

{

DownloadFunctionAttribute *dfa = (DownloadFunctionAttribute*)arg;

Downloader *downloader = dfa->downloader; // Unwrap the Downloader object

int id = dfa->threadId;

downloader->downloadThreadId(id); // Start download for thread with ID=id

pthread_exit (0);
}

Utility Components

Utility components are objects that are utilized by all other components. They are not
involved directly in the download process but provide services for the better operation of
other components.

e URL - abstracts an URL address

e URLCollections — abstracts a list of URL addresses

o ThreadRecord — abstract the information for a thread necessary for its
management

e ThreadTable — groups ThreadRecord objects. This object is used to synchronize
multiple threads that are involved in a download.

e LinkParser — this object parser the content of a HTML file for hyperlinks.

USER MANUAL

This section is describes how to compile, run and test the program.

Compilation

Along with the sources we provide a Makefile for automatic compilation. Whatever is
necessary to do is just to type make in the terminal under the the directory containing
Makefile. As an output two binary executable files will be created -
downloadmanager .exe and comparefiles.exe.

Running

Name of the executable file that downloads remote files is downloadmanager.exe. Its
usage is

./downloadmanager.exe -d | -n [positive number] -u <URL>
Parameters that the program takes are:

+ -d — downloads all hyperlinks in depth 1 found in <URL>, using this parameter
MTDM acts as a web robot.

« -n — specifies the number of threads to use during the download process. By
default n is equal to 5. The use of this parameter together with -d is not
supported. For now you can use it with -u only.

- -u — specifies the target URL file that has to be downloaded.

« Parameters -d and -u are mutually exclusive, meaning that you can't use them at
the same time.

Example Usage -u:
$./downloadmanager.exe -n 12 -u http://localhost/myfile.zip

The above command will download file named myfile.zip from host localhost
using /2 threads binding to the default port 80.

$./downloadmanager.exe -u http://www.sc.deu.edu.tr:8080/test.exe

The above command will download file named fest.exe from host named
www.cs.deu.edu.tr using threads 5 binding to port number 8080.

Example Usage -d:

http://www.cs.deu.edu.tr/
http://www.sc.deu.edu.tr:8080/test.exe
http://localhost/myfile.zip

$./downloadmanager.exe -d http://www.linux.org:1010/index.html

The above command downloads all links found in file index.html hosted at server
named www.linux.org.

Testing

You can test the download manager using the provided executable comparefiles.exe. Its
usage is:

$./comparefiles.exe <filenamel> <filename2>

+ filenamel could be the original file hosted in the server.
+ filename2 could be the file downloaded from the server.

comparefiles.exe performs binary comparison on both files and prints a report — equal or
not equal.

-10 -

http://www.linux.org/
http://www.linux.org:1010/index.html

IMPLEMENTATION

LINKPARSER

Public class LinkParser

LinkParser class implements url parsing accesses on a specified web file. This
class takes source file name and host name and starts finding links in source file. Basic
aim of this class finding links and parsing those with some operations so provide useful
and non-cracked links for other classes needs.

LinkParser class at creating point uses another class ‘URLCollection’ for keeping
information in. That is presenting some useful functions for accessing items well. In
constructor point, an object that is at URLColection type, specified special capacity. It is
optional for users defining capacity. This variable is used for keeping Urls that are finding
in source file.

This class provides a public function ‘getLinks’ that is used for taking links in a
variable that is a kind of data structure that is URLCollection object.

Field Detail

_sourcefile
private string _sourcefile

The string variable that is specified source file name ,is getting from user at
creation object point. Used for specified source file name.

_hostname
private string _hostname

The string variable that is specified host name,is getting from user at creation
object point. Used for some links which are without current hostname ,at that time used
current hostname.

_urls
private URLCollection _urls

-11 -

This is an object of URLCollection class. This is declared and at creation session
is initialized according to special capacity info. This is provide to user to free selection on
buffer choice.

Constructor Detail
LinkParser

Public
LinkParser (string hostname, string filename)

Constructor is empty with the specified constant capacity and essential
parameters.

Parameters
hostname - the current host name.
filename - the source file name that is used.
Method Detail
getLinks

public URLCollection& getLinks ()

Get the links in source file with using the private ‘getTAGlinks’ function. This
calls that function according to speciefied tags (i.e. HREF, SRC..). After that, return an
object that is holding urls.

Returns
An object that is holding urls

getTAGLinks

private void getTAGLinks (string tag)

Foundation links eliminating operations is occured this function. According to
getting tag , file is looking over for finding links, to purify from white spaces and
unnecessary characters. And useful links is added buffer object that is URLCollection.
Return

Parameters
tag - astring that is specifieded for tag that is looked over.

-12 -

URLCOLLECTION
Public class URLCollection

URLCollection class is specified for holding urls and some useful function for
moving and accessing on. This can be called basic data structer for urls.

This class specifies object on three creation. Default constructor doesn’t get any
parameter , capacity is defined constant 20. Copy constructor is used for cloning existing
object, gets a address of existing object. Another one is take a parameter for initial
capacity, that is an integer and specifies a capacity.

URLCollection has severel useful functions. Those are put, get, size which are for
adding new url, getting existing one according to posetion, and size value.

Field Detail

_size
private int _size

Collection size by default 20.

_cap
private int _cap

Capacity of url buffer. Default value is 20.

_rec
private char **_rec

Array of URL that are to be downloaded.
Constructor Detail
URLCollection

Public
URLCollection ()

This is a default constructor. _size and _cap value is initialized. Essential memory

-13-

is reserved for container _rec according to _cap value.

Puclic
URLCollection (URLCollection &url)

This is a copy constructor. The info of existing url object is used for initializing
new one and reserving necessary memory.

Parameters
url - existing url object

Public
URLCollection(int cap)

This a constructor which is getting parameter capacity for specifeing obvious
capacity value. Like this, first initial is implemented.

Parameters
cap - desired initial capacity value.

Method Detail

put
public void put (string url)

Inserts url into the collection. Each url in a collection is unique to avoid repeated
downloads.

Parameters
url - the url to be inserted.

get
public char* get (int pos)

Retrieves the url provided by its unique index.

Parameters
pos - posetion of requested url in container.

- 14 -

Returns
If url already exists in container, that is returned, else null is returned.

getSize
public int getSize ()

Specified number of urls in container.

Returns
Return size of container that is holding urls.

isurlExists

private bool isUrlExists (string url)

Check same url already exists or not

Parameters
url - url that is compare with existing ones.

Returns
If same url is existing returned True boolean value , else False.

URL

Class URL 1is used for parsing url subsets : protocol, hostname, port, identifier. If
URL is cracked, it is an error. That time it sends error message to user about this event.

This class has three constructor. One is default is specified according to some
common rules. This standart is for every part , protocol is HTTP , hostname is
LOCALHOST, port number is 80, and last identifier is index.html. Copy constructor
creates a new object like existing one. End last one creates an URL object specified by the
url string.

This class provides to user useful functions that are using for getting part of url
such as getport. And foundation operations as checking , parsing and so is doing private

two functions that are parseUrl and parseHandUrl.

This is essential class for parsing url and checking cracked status.

-15-

Field Detail

_protocol
private string _protocol

it holds protocol of url. Default value for it is Http

_hostname
private string _hostname

it holds hostname of url. Default value for it is localhost

_port
private int _port

it holds number port of url. Default value for it is 80

_identifier
private string _identifier

it holds file name or directory of file with name. Default value is index.html

Constructor Details
URL
Public
URL () :_protocol ("http"), _hostname("localhost"),

_port(80), _identifier("index.html") {}

It is default constructor all part of url is firstly initialized.

Public
URL (string url)

Creates an URL object specified by the url string

Parameters
url - astring parameter that is url.

- 16 -

Public
URL (const URL &url)

Copy constructor that creates an object from URL class , from existing one.

Parameters
url - anobject of URL class.

Method Detail

parseUrl
private int parseUrl (string url)

parses the specified url into _protocol, _hostname, _port and _identifier

Parameters
url - astring that specifies url

Returns
0 if successful or 1 in failure

parseUrlHand

private int parseUrlHand (const char *url, char
*hostname, int *port, char *identifier)

Low leverl URL parser method. This method is called by int parseUrl(string)

Parameters
url - aconstchar pointer specifies url
hostname - a char pointer (string) specifies hostname
port - aninteger specifies port number

identifier - achar pointer specifies only file name or directory with
file name

Returns
Return ERROR or SUCCESS status if an error is occured return ERROR,
else SUCCESS

-17 -

getProtocol
public string getProtocol ()

get current protocol

Returns
Return protocol

setProtocol
public void setProtocol (string protocol)

set current protocol with parameter

Parameters
protocol - astring specifies protocol

getHostname
public string getHostname ()

get current hostname

Returns
Return hostname

setHostname

public void setHostname (string hostname)
set current hostname with parameter

Parameters
hostname - a string specifies hostname

getPort
public int getPort ()

get current port

Returns

- 18 -

Return port

setPort
public void setPort (int port)

set current port with parameter

Parameters
port - an integer specifies port

getldentifier
public string getIdentifier ()

get current identifier

Returns
Return identifier

setldentifier
public void setIdentifier (string Identifier)

set current identifier with parameter

Parameters
identifier - astring specifies identifier

toString
public string toString ()

print part of url suitable form

Returns
res - astring specifies url
DOWNLOADLINKS

This file is not a class just include two functions for download operation. This

- 19 -

functions uses above classes functions and properities. Foundation download operation is
occured these functions. These functions download links in web file on syncronization.

Method Detail

download_links
public int download_links (string url)

Manages download process on several links downloading syncronization

Parameters
url - astring specifies url that is downloaded

Returns

Return an integer value that specifies download status. Whether an error is
occurred returned ERROR(0) value else SUCCESS(1)

download_links_hand
private void *download_links_hand (void* arqg)

download handle. Entry point for threads

Parameters
arg - pointer to void specified arguman of thread function.

FILEDOWNLOADER

This file defines the function that are involved in a download process. This
functions uses above classes functions and properties. Foundation download operation is
occurred these functions. Thread creation and so is used here.

Method Detail

download_files
public int download_file (string url, int threadNum)

Manages download process.

-20 -

Parameters
url - astring specifies url that is downloaded
threadNum - an integer specifies thread number

Returns
Return an integer value that specifies download status. Wheather an error
is occured returned ERROR(0) value else SUCCESS(1)

download_file hand
private void *download_file_hand (void* arqg)

download handle. Entry point for threads

Parameters
arg - pointer to void specified arguman of thread function.

URLFILE

Public class URLFile

This file defines a URLFile class. URLFile class abstracts a remotely hoted file
that has to be downloaded. Instantiated objects apears as an interface between the remote
URL file and the local file in a computer's drive.

Field Detail

_name
private string _name

The string variable that is specified source file name with directory.

_url
private URL _url

An object of URL class is specified url,and used for some URL operations such as
getHostname.

-21 -

_cursorPos
private unsigned long _cursorPos

A unsigned long integer is specified cursor posation on file.

_size

private unsigned long _size

A unsigned long integer is specified size of file base byte.
_isOpen

private bool _isOpen

A boolean variable is specified file open status.
_diskFile

private ofstream _diskFile

It is a stream of file.
Constructor Detail
URLFile
Public

URLFile() : _name(), _url(), _cursorPos(0), _size(0),
_isOpen(false), _diskFile() {}

It is default constructor some variables are initializedwith default value.

Public
URLFile (URL url, string fileName) : _url(url),
_cursorPos(0), _name(fileName), _isOpen(false), _diskFile()

This constructor is getting url and file name from user. Size value is initialized
with function that is finding file size.

Parameters
url - an object of URL class is specified url.

-22 -

fileName - astring is specified file name.

Public
URLFile (URL url) : _url(url), _cursorPos(0),
_isOpen(false), _diskFile(){}

This constructor is getting an object of URL class from user at creation point. And
size variable is initialized with function.

Method Detail

open
public bool open ()

This method creates the a file in the HDD and initializes its size to the size of the
target URL file. Before calling write method file open method MUST be called.

Returns
true if file is successfully created and opened for writing.

write
public long write (ThreadRecord &rec)

This method writes the buffer of passed argument to te proper place within the
file.

Parameters

rec - this argument contains cruical information about writing the
information

Returns
Number of bytes written to the file

close
public bool close()

closes the file

-3 -

Returns
true if file is closed successfully and false on failure

getSize
public unsigned long getSize ()

Determines the size of the file to be downloaded, sending HEAD request through
HTTPConnection.

Returns
The size of the file to be downloaded in bytes

isOpen
public bool isOpen ()

check file open status
Returns
true if file is opened and false if file is not opened.

findFileSize
private unsigned long findFileSize ()

This mehtod creates a HTTPConnection object and sends HEAD request to get the
file size to be downloaded. If error occurs returned value is 0

Returns
The size of the file to be downloaded (in bytes). O if error occurs.

THREAD RECORD

Public class ThreadRecord

ThreadRecord includes information about specified thread. Every thread has own
record to hold self data. In record, there are information about thread, these information
are using in downloading operation.

This class provides user to reach all fields of record. User can set and get each
field by using methods of this class.

-4 -

Field Detail

_id

private int _id

Identification number of thread
_startByte

private long _startByte

The byte where thread start to download from specified URL.
_endByte

private long _endByte

The end byte where download will stop.
_downloadedBytes

private long _downloadedBytes

Amount of downloaded bytes
_fileCursorPos

private long _fileCursorPos

Cursor position in file where writing operation will start.
_Status

private int _status

Download status information. If status is O thread is completed download,
otherwise thread is downloading.

buffer
public char buffer [BUFFER_SIZE]

_25.

Thread read the data from specified URL and store the data here. Buffer is
temporary place before writing to the file.

Constructor Detail

ThreadRecord
public ThreadRecord ()

Default constructor

ThreadRecord

public ThreadRecord (int id, long startByte, long
_endByte)

Parameters:
id - thread id number.
startByte - the byte where thread start to download.
endByte - the end byte where thread stop downloading.

ThreadRecord
public ThreadRecord (const ThreadRecord &rec)

Copy constructor

Parameters:
rec - Address of the thread record which is copied.

Method Detail

getld
public int getId()

Returns id number of thread.

Returns:
Id number of thread

_26-

setld
public void setId(int id)

Change id number of thread with taken parameter.
Parameters:

id - new id number

getStartByte
public long getStartByte ()

Returns start byte where thread start downloading.

Returns:
Start byte of downloading process.

setStartByte
public void setStartByte (long startByte)

Change start byte of the thread.

Parameters:
startByte - new start byte number.

getEndByte
public long getEndByte ()

Returns end byte where thread stop downloading.

Returns:
End byte for downloading process.

setEndByte
public void setEndByte (long endByte)

Change end byte of the thread with endByte.

Parameters:

-7 -

startByte - new end byte number.

getDownloadedBytes
public long getDownloadedBytes ()

Returns amount of downloaded bytes.

Returns:
Amount of downloaded bytes.

setDownloadedBytes
public void setDownloadedBytes (long downloadedBytes)

Change amount of downloaded bytes with new value.

Parameters:
downloadedBytes - New value of downloaded bytes.

getFileCursorPos
public long getFileCursorPos ()

Returns cursor position where downloaded data will be written.

Returns:
Cursor position in file.

setFileCursorPos
public void setFileCursorPos (long fileCursorPos)

Change cursor position in file.

Parameters:
fileCursorPos - New cursor position.

-08 -

getStatus
public int getStatus ()

Returns status of the downloading process. If it is O downloading process is
finished, else downloading process is going on.

Returns:
Status of downloading process.

setSatus
public void setStatus (int status)

Change status of the downloading process.

Parameters:
status - New value of status.

THREAD TABLE

Public class ThreadTable

Thread table maintains information that is crucial to manage multiple threads
during download process. Thread Table consist of rows of type threadRecord. In one
downloading operation, all created threadRecords are adding to this table.

In this class user can insert new threadRecord object to table and can obtain
pointer of any threadRecord.

Field Detail

_thRecord
private ThreadRecord *_thRecords

The array of thread records.

_capacity
private int _capacity

-9

Thread table capacity.

_size

private int _size

Number of thread records in table.

Constructor Detail

ThreadTable

public ThreadTable () :_thRecords (NULL), _capacity(0),
_size (0)

Default constructor.

ThreadTable
public ThreadTable (int capacity)

Paramaters:
capacity - the capacity of the thread table.

Method Detail

insert

public int insert (ThreadRecord rec)

This method inserts a new thread record in a table. It is assumed that caller does
not insert a duplicate record. Function may return 1 as failure if there is not enough space
to insert the record.

Parameters:

rec - A new thread record, will be inserted to the table.
Returns:

0 — if it inserts new item successful

1 — if fail has occurred.

-30 -

getRecordHandle
public ThreadRecord *getRecordHandle (int threadId)

This method returns a pointer to a ThreadRecord object that match with the
argument threadld. If such object does not exists returns NULL. Caller must be careful
manipulating the returned result because all changes will be implicated in the object.

Parameters:
threadId - specifies id numbers of the thread records.
Returns:

It returns pointer of the threadRecord object whose i1d number is equal to
threadId.

SOCKET

Public class Socket

This class creates Socket object which used to connect to remote hosts in a
network.

This class create and establish socket connection with the specified hostname on
the specified port number. On this socket connection caller can send requests and receive
data.

Field Detail

sd
private int sd

This is socket descriptor.

servAddr
private sockaddr_in servAddr

It holds server address where downloading data will be taken.

-31 -

localAddr
private sockaddr_in localAddr

It holds local address.

Constructor Detail

Socket
public Socket ()

Default constructor

Method Detail

create
public bool create ()

This function creates new socket object.

Returns:
true - ifitis created successfully
false - if fail has occurred

bind
public bool bind(const int port)

This function binds the socket to the specified port number.

Parameters:
port - port number
Returns:
true - if binding has been performed successfully

-32-

false - if fail has occurred

close
public bool close ()

This function closes the socket object.
Returns:

true - if socket has been closed successfully
false - if fail has occurred

connect
public bool connect (const string host, const int port)

This function establish socket connection with the specified hostname on the
specified port number.

Parameters:
host - hostname

port - port number
Returns:

true - if connected successfully
false - if fail has occurred

send
public bool send(const string request) const
This function sends a request to another socket (server).
Parameters:
request - the request which is to be sent to the server.
Returns:
true - if message has been send successfully
false - if fail has occurred
receive

public int receive (char *buffer) const

-33-

This function is used to read from a socket to receive a response generated by the
remote host. Received message is returned through buffer parameter passed as argument.
This method returns the number of read characters. -1 if error occurs during data
transmission, O if nothing has been received. Both -1 and 0 as returned values should be
considered as end of stream and the socket should be closed if no other communication is
pending.

Parameters:
buffer - itistemporary place to store received data.
Returns:
This function returns number of received data if it is successful.
-1 - if fail has occurred
0 - if nothing is accepted

isValid
public bool isValid () const

Tests the socket, if it is valid returns true, else it returns false.

Returns:
true - if socket is valid
false - if socket is invalid

HTTPCONNECTION

Public class HTTPConnection

HTTPConnection class provides establishing HTTP connection with a HTTP
server. This class utilizes Socket class to connect to the HTTP server.

Through HTTP connection, this class sends head or get requests. There are three
different request types, head request to obtain header data, sendGet request to obtain any
data, and senGetRange request to obtain range of data. After send get requests, caller has
to use receiveGet to obtain data.

Field Detail

-34 -

_url
public URL _url

URL object, it uses for parsing url and reach its fields easily.

_id
public int _id

Connection id number

_socket
public Socket _socket

Socket object, it uses for receiving data from the server.

mutex
public pthread _mutex_t mutex

Mutual exclusion, it prevents race condition between threads while they are trying
to access file.

Constructor Detail

HTTPConnection
public HTTPConnection ():_url(), _id(), _socket()

Default constructor

HTTPConnection

public HTTPConnection (int id, URL url) :_id(id),
_url(url),_socket ()

Parameters:
id - HTTPConnection id number
url - URL object

-35-

Method Detail

sendGet
public bool sendGet ()

This method sends a get request to download the target file from specified URL.
Returns:

true - ifrequestis send successfully

false - iffail has occurred

sendGetRange
public bool sendGetRange (int startByte, int endByte)

This method sends a get range request. startByte specifies the beginning of
download and end byte specifies the end byte of the range.

Returns:
true - ifrequestis send successfully
false - if fail has occurred

head
public string head()

This method performs a head request and returns the header as a result. After
calling this method caller should close the connection if (s)he does not need it any more.
Returns:
Header information related to the target URL.

receiveGet
public int receiveGet (ThreadRecord &threadRecord)

This method reads the response from the HTTP server. It should be called after
calling sendGet or sendGetRange methods. Passed argument is a reference to the
threadRecord associated with the thread calling this method. This method alters fields
_downloadedBytes, buffer and sets status to 1 when buffer is full.

-36 -

Parameters:
threadRecord - address of the threadRecord. This method alters
_downloadedBytes, buffer, status fields in record.

Returns:
This method returns number of downloaded bytes.

close
public bool close ()
This method close HTTPConnection.
Returns:
true - if closed successfully
false - if fail has occurred
createGetRequest

private string createGetRequest ()
This method creates request for sendGet function.

Returns:
This method returns created get request string.

createGetRangeRequest
private string createGetRangeRequest (int startByte, int

endByte)

This method creates request for sendGetRange function.

Parameters:
strartByte - start byte of the range where download will start
endByte - end byte of the range where download will be finished

Returns:

-37 -

This method returns created get range request string.

createHeadRequest
private string createHeadRequest ()

This method creates request for head function.

Returns:
This method returns created head request string.

DOWNLOADER

Public class Downloader

Downloader class handles multi threaded download of a remote file through a http
protocol. Download class uses HTTPConnection class to connect to the the HTTP server
and receive the file. URLFile class is used to handle the process of writing obtained data
from HTTPConnection object to a physical file in a local drive.

An instantiated Downloader object may be used to download one url target at a
time.

Field Detail

_threadNum
private int _threadNum

Number of threads

_threadTable
private ThreadTable _threadTable

Thread table object

-38 -

_url
private URL _url

Url object, it holds specified URL.

_file

private URLFile _file

The URLFile that object handles file operations such as writing.
fileLocker

private pthread_mutex_t fileLocker

Mutex used to avoid moultiple access to the shared file
_fileName

private string _fileName

File name, where downloaded will be written.

Constructor Detail

Downloader
public Downloader ()

Default constructor

Downloader
public Downloader (string url, int threadNum)

Parameters:
url - spacified url
threadNum - number of threads

Downloader

-30 .-

public Downloader (string url, int threadNum, string
fileName)

Parameters:
url - spacified url
threadNum - number of threads

fileName - file name where downloaded data will be written.

Method Detail

downloadThreadld
public bool downloadThreadld (int threadId)

This method downloads data according to threadld number from specified URL.
Returns:

true - if data downloaded successfully
false - if fail has occurred

saveFile

public bool saveFile ()
This method close file with using URLFile object's close function.
Retuns:

true - iffile is closed successfully
false - if fail has occurred

DOWNLOADFUNCTIONATTRIBUTE

Public struct DowloaderFunctionAttribute

DownloadFunctionAttribute is a struct which consist of thread id and pointer of
downloader object . An object of this class is created before creating a download thread

and passed to the trhead's start function as argument.

Field Detail

_40 -

threadld
public int threadId

Id number of the thread.

downloader
public Downloader *downloader

A pointer of the downloader object.

Constructor Detail

DownloadFunctionAttribute
public DownloadFunctionAttribute ()

Default constructor

DownloadFunctionAttribute

public DownloadFunctionAttribute (Downloader
*downloaderPth, int thId)

Parameters:
downloaderPth - A pointer of Downloader object
thId - id number of the thread record

-4] -

